Infiltration of granulocytes into the transparent mammalian cornea can result in loss of corneal clarity and severe visual impairment. Since the cornea is an avascular tissue, recruitment of granulocytes such as neutrophils and eosinophils into the corneal stroma is initiated from peripheral (limbal) vessels. To determine the role of vascular adhesion molecules in this process, expression of platelet endothelial cell adhesion molecule 1 (PECAM-1), ICAM-1, and VCAM-1 on limbal vessels was determined in a murine model of ocular onchocerciasis in which Ags from the parasitic worm Onchocerca volvulus are injected into the corneal stroma. Expression of each of these molecules was elevated after injection of parasite Ags; however, PECAM-1 and ICAM-1 expression remained elevated from 12 h after injection until 7 days, whereas VCAM-1 expression was more transient, with peak expression at 72 h. Subconjunctival injection of Ab to PECAM-1 significantly inhibited neutrophil recruitment to the cornea compared with eyes injected with control Ab (p = 0.012). Consistent with this finding, corneal opacification was significantly diminished (p < 0.0001). There was no significant reduction in eosinophils. Conversely, subconjunctival injection of Ab to ICAM-1 did not impair neutrophil recruitment, but significantly inhibited eosinophil recruitment (p = 0.0032). Injection of Ab to VCAM-1 did not significantly inhibit infiltration of either cell type to the cornea. Taken together, these results demonstrate important regulatory roles for PECAM-1 and ICAM-1 in recruitment of neutrophils and eosinophils, respectively, to the cornea, and may indicate a selective approach to immune intervention.