Background: The protection of endothelial cells (ECs) against reperfusion injury has received little attention. In this study, we used Tandem Mass Tag (TMT) labeling proteomics to investigate the modulated proteins in an in vitro model of cardiac microvascular endothelial cells (CMECs) subjected to ischemia/reperfusion (I/R) injury and their alteration by traditional Chinese medicine Tongxinluo (TXL). Methods: Human CMECs were subjected to 2 h of hypoxia followed by 2 h of reoxygenation with different concentrations of TXL Protein expression profiles of CMECs were determined using tandem mass spectrometry. We evaluated several proteins with altered expression in I/R injury and summarized some reported proteins related to I/R injury. Results: TXL dose-dependently decreased CMEC apoptosis, and the optimal concentration was 800 µg/mL. I/R significantly altered proteins in CMECs, and 30 different proteins were detected between a normal group and a hypoxia and serum deprivation group. In I/R injury, TXL treatment up-regulated 6 types of proteins including acyl-coenzyme A synthetase ACSM2B mitochondrial (ACSM2B), cyclin-dependent kinase inhibitor 1B (CDKN1B), heme oxygenase 1 (HMOX1), transcription factor SOX-17 (SOX17), sequestosome-1 isoform 1 (SQSTM1), and TBC1 domain family member 10B (TBC1D10B). Also, TXL down-regulated 5 proteins including angiopoietin-2 isoform c precursor (ANGPT2), cytochrome c oxidase assembly factor 5 (COA5), connective tissue growth factor precursor (CTGF), cathepsin L1 isoform 2 (CTSL), and eukaryotic elongation factor 2 kinase (LOC101930123). These types of proteins mainly had vital functions, including cell proliferation, stress response, and regulation of metabolic process. Conclusions: The study presented differential proteins upon I/R injury through a proteomic analysis. TXL modulated the expression of proteins in CMECs and has a protective role in response to I/R.