Tumors require ongoing angiogenesis to support their growth. Inhibition of angiogenesis by production of angiostatic factors should be a viable approach for cancer gene therapy. Endostatin, a potent angiostatic factor, was expressed in mouse muscle and secreted into the bloodstream for up to 2 weeks after a single intramuscular administration of the endostatin gene. The biological activity of the expressed endostatin was demonstrated by its ability to inhibit systemic angiogenesis. Moreover, the sustained production of endostatin by intramuscular gene therapy inhibited both the growth of primary tumors and the development of metastatic lesions. These results demonstrate the potential utility of intramuscular delivery of an antiangiogenic gene for treatment of disseminated cancers.
Minimizing myocardial ischemia-reperfusion injury has broad clinical implications and is a critical mediator of cardiac surgical outcomes. “Ischemic injury” results from a restriction in blood supply leading to a mismatch between oxygen supply and demand of a sufficient intensity and/or duration that leads to cell necrosis, whereas ischemia-reperfusion injury occurs when blood supply is restored after a period of ischemia and is usually associated with apoptosis (i.e. programmed cell death). Compared to vascular endothelial cells, cardiac myocytes are more sensitive to ischemic injury and have received the most attention in preventing myocardial ischemia-reperfusion injury. Many comprehensive reviews exist on various aspects of myocardial ischemia-reperfusion injury. The purpose of this review is to examine the role of vascular endothelial cells in myocardial ischemia-reperfusion injury, and to stimulate further research in this exciting and clinically relevant area. Two specific areas that are addressed include: 1) data suggesting that coronary endothelial cells are critical mediators of myocardial dysfunction after ischemia-reperfusion injury; and 2) the involvement of the mitochondrial permeability transition pore in endothelial cell death as a result of an ischemia-reperfusion insult. Elucidating the cellular signaling pathway(s) that leads to endothelial cell injury and/or death in response to ischemia-reperfusion is a key component to developing clinically applicable strategies that might minimize myocardial ischemia-reperfusion injury.
Intralobar sequestration is a rare cause of recurrent bronchitis, pneumonia, or hemoptysis that is often misdiagnosed both because of a lack of recognition of radiologic findings and a low expectation of the disease, particularly in middle-aged and elderly adults. Definitive therapy is surgical, and preoperative delineation of anatomy is essential. We present 2 cases from our institution that were atypical in presentation and used different radiographic imaging modalities. A review of the literature pertaining to presentations in older adults and radiographic delineation of these lesions follows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.