Akt has been implicated in pro-survival and anti-apoptotic activities in many cell types, including dorsal root ganglion (DRG) and spinal motor neurons. In this immunohistochemical study we have monitored phosphorylated Akt (p-Akt) levels in adult mouse DRGs and spinal cord following unilateral peripheral sciatic nerve transection (axotomy) or carrageenan-induced inflammation. In control animals around half of the lumbar DRG neuron profiles (NPs), mainly small and medium-sized ones, were p-Akt immunoreactive (IR), and of these around 50% expressed calcitonin gene-related peptide and/or isolectin IB4. Two weeks after axotomy, the number of p-Akt-positive NPs was only slightly reduced, but p-Akt immunofluorescence intensity was strongly increased. One third of the ipsilateral p-Akt-IR NPs was galanin positive, but virtually without colocalization with neuropeptide Y. Furthermore, p-Akt-like immunoreactivity significantly increased in intensity in the ipsilateral spinal dorsal horn after axotomy and expanded into deeper layers. Carrageenan-induced peripheral inflammation increased the number of p-Akt-IR NPs after 1 h. Both axotomy and inflammation caused a clear increase in nuclear p-Akt-like immunoreactivity in DRG neurons. Our findings support a role for Akt as a key signaling molecule in sensory neurons and spinal cord after peripheral injury.