Regenerated cellulose nanoparticles (RCNs) are ideal materials for new biomass polymer composites industries. RCNs and composites of RCNs and water‐borne polyurethane (RCN/WPU) were prepared using a facile and environmentally friendly approach without the use of any harmful chemicals. The morphological, thermal, and mechanical properties of the RCN/WPU nanocomposite were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), rheometer, wide‐angle X‐ray diffraction, and enzymatic hydrolysis. RCNs exhibited low crystallinity upon regeneration with an NaOH‐based aqueous solution, and were identified by SEM and TEM to consist of the more thermodynamically stable cellulose form. TGA showed that the thermal stability of RCN/WPU nanocomposites was increased by the addition of RCNs. Finally, enzymatic hydrolysis using cellulase indicated that the biodegradability of RCN/WPU nanocomposites was also improved. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46633.