Among the many types of transition-metal-catalyzed C-C bond-forming reactions, olefin metathesis has come to the fore in recent years owing to the wide range of transformations that are possible with commercially available and easily handled catalysts. Consequently, olefin metathesis is now widely considered as one of the most powerful synthetic tools in organic chemistry. Until recently the intermolecular variant of this reaction, cross-metathesis, had been neglected despite its potential. With the evolution of new catalysts, the selectivity, efficiency, and functional-group compatibility of this reaction have improved to a level that was unimaginable just a few years ago. These advances, together with a better understanding of the mechanism and catalyst-substrate interactions, have brought us to a stage where more and more researchers are employing cross-metathesis reactions in multistep procedures and in the synthesis of natural products. The recent inclusion of alkynes and hindered bicyclic olefins as viable substrates for bimolecular metathesis coupling, the discovery of enantioselective cross-metathesis and cross-metathesis in water, and the successful marriage of metathesis and solid-phase organic synthesis has further widened the scope of this versatile reaction.