In Alzheimer disease (AD) mitochondrial abnormalities occur early in the pathogenic process and likely play a significant role in disease progression. Tau is a microtubule-associated protein that is abnormally processed in AD, and a connection between tau pathology and mitochondrial impairment has been proposed. However, few studies have examined the relationship between pathological forms of tau and mitochondrial dysfunction. We recently demonstrated that inducible expression of tau truncated at Asp-421 to mimic caspase cleavage (T4C3) was toxic to immortalized cortical neurons compared with a fulllength tau isoform (T4). In this study we investigated the effects of T4C3 on mitochondrial function. Expression of T4C3 induced mitochondrial fragmentation and elevated oxidative stress levels in comparison with T4-expressing cells. Thapsigargin treatment of T4 or T4C3 cells, which causes an increase in intracellular calcium levels, resulted in a significant decrease in mitochondrial potential and loss of mitochondrial membrane integrity in T4C3 cells when compared with cells expressing T4. The mitochondrial fragmentation and mitochondrial membrane damage were ameliorated in T4C3 cells by pretreatment with cyclosporine A or FK506, implicating the calcium-dependent phosphatase calcineurin in these pathogenic events. Increased calcineurin activity has been reported in AD brain, and thus, inhibition of this phosphatase may provide a therapeutic target for the treatment of AD.Tau is a microtubule-associated protein which in a hyperphosphorylated state forms paired helical filaments; the major component of neurofibrillary tangles (NFTs) 3 (1, 2). These NFTs are one of the primary pathophysiological hallmarks of Alzheimer disease (AD) and were originally suggested to play a major role in facilitating neuronal degeneration (1). However, recent studies now suggest that mature tangles may not be the toxic species (3, 4). For example, in a repressible tau overexpression transgenic mouse model, turning off tau expression attenuated memory impairment and neuronal loss, whereas NFTs continued to accumulate (5). Furthermore, reduction of endogenous wild type tau attenuated behavioral abnormalities in an APP transgenic AD mouse model, in which substantial NFT pathology is absent (6). These and other findings suggest that a form or forms of tau that precede NFT formation may be the toxic species. There is increasing evidence that, in addition to aberrant phosphorylation, caspase cleavage of tau plays a role in the oligomerization and formation of a pathological tau species in AD (7,8). Tau is an in vitro substrate for caspase-3 and is readily cleaved at Asp-421, the caspase-3 cleavage site, located on the carboxyl-terminal end of the protein (7-10). This cleavage event results in a highly fibrillogenic tau isoform which in in vitro studies aggregates more readily and to a greater extent than full-length tau and facilitates aggregate formation of fulllength tau (7,8). Antibodies that specifically recognize Asp-421-truncated tau show ...