The Invariant Subspace Problem for Hilbert spaces is a long-standing question and the use of universal operators in the sense of Rota has been one tool for studying the problem. The best known universal operators have been adjoints of analytic Toeplitz operators or unitarily equivalent to them. We present many examples of Toeplitz operators whose adjoints are universal operators and exhibit some of their common properties. Some ways in which the invariant subspaces of these universal operators interact with operators in their commutants are given. Special attention is given to the closed subalgebra, not always the zero algebra, of compact operators in their commutants. Finally, three questions connecting shift invariant subspaces and invariant subspaces of analytic Toeplitz operators are raised. Positive answers for both of the first two imply the existence of non-trivial invariant subspaces for every bounded operator on separable Hilbert spaces of dimension two or more.