In this study, we aim to develop a system optimization model of Railway Freight Transportation Routing Design (RFTRD) and conduct solution analysis which is based on the improved multi-objective swarm intelligence algorithm. The proposed improved multi-objective swarm intelligence algorithm is applied to solve the combinatorial optimization problem of railway door-to-door freight transportation through design, and provide decision support for railway vehicle door-to-door freight transportation through design. The optimization results shows that, the random multi-neighborhood based multi-objective shuffled frog-leaping algorithm with path relinking (RMN-MOSFLA-PR) can be better applied to solve the combined multi-objective optimization problem, and this proposed improved algorithm can find Pareto frontier through the comparative analysis in the design example of railway door-to-door freight transportation. The frontier can provide support for railway transportation enterprises, arrange the decision-making of the starting and ending stations for multiple shippers, and optimize the use of existing transportation resources, so as to reduce the transportation cost and time of the system.INDEX TERMS Intelligent water drops algorithms, multi-objective cluster intelligent algorithms, random frog-leaping algorithm, random multi-neighborhood structure, routing design.