2015
DOI: 10.1109/tgrs.2015.2401602
|View full text |Cite
|
Sign up to set email alerts
|

RPC Estimation via $\ell_1$-Norm-Regularized Least Squares (L1LS)

Abstract: A rational function model (RFM), which consists of 80 rational polynomial coefficients (RPCs), has been widely used to take the place of rigorous sensor models in photogrammetry and remote sensing. However, it is difficult to solve the RPCs because of the requirement for numerous observation data [ground control points (GCPs)] in a terrain-dependent case and the strong correlation between the coefficients (ill-poseness). Regularization methods are usually applied to cope with the correlations between the coeff… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
16
0
2

Year Published

2018
2018
2022
2022

Publication Types

Select...
7
1
1

Relationship

1
8

Authors

Journals

citations
Cited by 47 publications
(18 citation statements)
references
References 29 publications
0
16
0
2
Order By: Relevance
“…In addition, a phase correlation-based method (called the PC method) was also applied to estimate the displacement of each tile pair instead of the similarity transform. Lastly, a terrain-dependent RPC model [49] fitted to all the final control points, combined with the random sampling consensus algorithm (RANSAC), was utilized to correct the whole image. After rectification, fifty checkpoints, distributed evenly in the image, were selected manually to validate the final registration accuracy in terms of three measurements, e x , e y and e, the same as in the experiment where the similarity transform was estimated directly Secstion 4.2.3.1.…”
Section: Register Scenes Of Remote Sensing By Tilingmentioning
confidence: 99%
“…In addition, a phase correlation-based method (called the PC method) was also applied to estimate the displacement of each tile pair instead of the similarity transform. Lastly, a terrain-dependent RPC model [49] fitted to all the final control points, combined with the random sampling consensus algorithm (RANSAC), was utilized to correct the whole image. After rectification, fifty checkpoints, distributed evenly in the image, were selected manually to validate the final registration accuracy in terms of three measurements, e x , e y and e, the same as in the experiment where the similarity transform was estimated directly Secstion 4.2.3.1.…”
Section: Register Scenes Of Remote Sensing By Tilingmentioning
confidence: 99%
“…Ключевые слова: метод согласованного оценивания, RFM-модель Введение RFM-модель устанавливает математическую связь между геодезическими координатами объекта и его координатами на изображении с помощью коэффициентов многочленов, которые называются коэффициентами рационального многочлена (RPC -Rational Polynomial Coefficients). RPC-коэффициенты наиболее популярный способ описания модели сенсора [1]. Для нахождения коэффициентов модели обычно используют метод наименьших квадратов (МНК) [2].…”
Section: аннотацияunclassified
“…Рациональным путем нарастания могущества нашей страны являются развитие, сохранение, а также мобилизация интеллектуального потенциала России. Будущее нашей страны тесно взаимосвязано с переходом на инновационный путь развития, при этом ключевую роль реализации намеченного пути выполняет образование [1]. В современных условиях одним из основных показателей реализации образовательной политики вуза является конкурентоспособность университета, а также его рейтинг в числе других профильных высших учебных учреждений.…”
Section: аннотацияunclassified
“…For regularization, there are many sparsity regularizers for relaxing the 0 -norm, among which the convex 1 -norm [14,15] and the nonconvex -norm to the -th power [16][17][18] are the main methods:…”
Section: Introductionmentioning
confidence: 99%