Разработан быстродействующий алгоритм построения карты диспарантности по разноракурсным изображениям. Предложено ввести этап начального совмещения изображений, а также процедуры учёта эпиполярных ограничений и формирования пирамиды изображений с различным разрешением. Технология реализована в CUDA-среде. Приводятся результаты экспериментальных исследований, иллюстрирующие высокое быстродействие при сохранении высокого качества восстановления 3D-сцен. Ключевые слова: цифровая обработка изображений, реконструкция 3D-сцен по разноракурсным изображениям, сопоставление изображений, аффинное преобразование, CUDAтехнология. Цитирование: Котов, А.П. Технология оперативной реконструкции трёхмерных сцен по разноракурсным изображениям / А.П. Котов, В.А. Фурсов, Е.В. Гошин// Компьютерная опти
In this paper a procedure of building a digital terrain model (DTM) from the satellite images is researched. The procedure is based on the authors' previously developed algorithms of fast image matching for building disparity maps implemented on GPUs (Graphics Processing Units). In this paper we propose a computational procedure for constructing a DTM from the satellite stereo images. Experimental studies have shown that while this procedure constructs a DTM that may be less accurate than the one achieved with the use of the ENVI software, it offers a significantly shorter time of processing.
We report on the parallel implementation of a multi-view image segmentation algorithm via segmenting the corresponding three-dimensional scene. The algorithm includes the reconstruction of a three-dimensional scene model in the form of a point cloud, and the segmentation of the resulting point cloud in three-dimensional space using the Hough space. The developed parallel algorithm was implemented on graphics processing units using CUDA technology. Experiments were performed to evaluate the speedup and efficiency of the proposed algorithm. The developed parallel program was tested on modelled scenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.