Smectic main-chain liquid crystalline elastomers (MCLCE) with polydomain morphology are rare examples of elastomers that can form a neck and undergo cold drawing under tension. However, not all previous studies of the mechanical behavior of smectic MCLCE reported neck formation. The mechanical response of a polydomain smectic MCLCE has therefore been characterized by elongation at varying strain rates and temperatures to identify factors favoring mechanical instability. Yielding and neck formation are increasingly favored as the strain rate increases at constant temperature, or as the temperature decreases toward T g . As cold drawing pro-ceeds, significant creep occurs continuously within the neck, in contrast to the behavior of certain linear polymers that exhibit a ''natural'' draw ratio. Thermal imaging during elongation indicates that viscous heating is not a prerequisite for neck formation. Rather, inherent softening of the material during yielding due to morphological changes leads to an enhanced rate of deformation and contraction at the neck. V C 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 591-598, 2011