Background. Circulating long noncoding RNAs (lncRNAs) have been demonstrated to serve as diagnostic biomarkers for various cancers. We aimed to elucidate the diagnostic efficacy of eight serum lncRNAs HULC, MALAT1, Linc00152, PTENP1, PTTG3P, SPRY4-IT1, UBE2CP3, and UCA1 and their combinations for the diagnosis of hepatocellular carcinoma (HCC). Methods. A total of 129 patients with HCC, 49 patients with liver cirrhosis, 27 patients with chronic hepatitis B, and 93 healthy controls were enrolled in this study. The levels of serum lncRNAs were assessed by quantitative real-time polymerase chain reaction. The correlations between serum lncRNAs and clinicopathological characteristics were further analyzed. The receiver operating characteristic (ROC) curve and area under curve (AUC) were utilized to estimate the diagnostic capacity of serum lncRNAs and their combination with AFP for HCC. A logistic regression model was performed to establish a multiple-lncRNA panel. Results. The levels of serum HULC, MALAT1, Linc00152, PTTG3P, SPRY4-IT1, UBE2CP3, and UCA1 were significantly higher in HCC patients than in patients with benign liver diseases and healthy controls, whereas serum PTENP1 was significantly decreased in HCC patients compared with healthy participants. Positive correlations between serum Linc00152 and GGT, serum PTTG3P and GGT, and serum SPRY4-IT1 and ALT were noted in HCC patients. ROC analysis revealed that all these lncRNAs had a significantly predictive value for HCC except for PTENP1. The best performance of single lncRNA was obtained by Linc00152 with an AUC of 0.877. When combined with AFP, the combination of Linc00152 and AFP gained the highest accuracy, yielding an AUC of 0.906. Through logistic regression analysis, the panel consisting of serum linc00152, UCA1, and AFP provided the greatest predictive ability, obtaining an AUC of 0.912 with 82.9% sensitivity and 88.2% specificity. Conclusion. The panel of serum Linc00152, UCA1, and AFP demonstrates a novel and noninvasive biomarker with relatively high sensitivity and specificity for HCC diagnosis.