2017
DOI: 10.11591/ijece.v7i4.pp2241-2252
|View full text |Cite
|
Sign up to set email alerts
|

Rule Optimization of Fuzzy Inference System Sugeno using Evolution Strategy for Electricity Consumption Forecasting

Abstract: The need for accurate load forecasts will increase in the future because of the dramatic changes occurring in the electricity consumption. Sugeno fuzzy inference system (FIS) can be used for short-term load forecasting. However, challenges in the electrical load forecasting are the data used the data trend. Therefore, it is difficult to develop appropriate fuzzy rules for Sugeno FIS. This paper proposes Evolution Strategy method to determine appropriate rules for Sugeno FIS that have minimum forecasting error.… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 25 publications
0
2
0
Order By: Relevance
“…Parameter ANFIS dapat dipisahkan menjadi dua, yaitu parameter premis dan konsekuen yang dapat diadaptasikan dengan pelatihan hybrid. Pelatihan hybrid dilakukan dalam dua langkah, yaitu langkah maju dan langkah mundur (Santika et al, 2017). System (ANFIS) yang digunakan dalam penelitian ini adalah metode yang menggabungkan kecerdasan tiruan dari jaringan saraf (neural network) dengan kecemerlangan inferensi fuzzy untuk memodelkan hubungan antara input dan output dengan fuzzy base sugeno, fuzzy rule base, dan jaringan syaraf tiruan (JST).…”
Section: Metode Analisis Neuro-fuzzy Anfisunclassified
“…Parameter ANFIS dapat dipisahkan menjadi dua, yaitu parameter premis dan konsekuen yang dapat diadaptasikan dengan pelatihan hybrid. Pelatihan hybrid dilakukan dalam dua langkah, yaitu langkah maju dan langkah mundur (Santika et al, 2017). System (ANFIS) yang digunakan dalam penelitian ini adalah metode yang menggabungkan kecerdasan tiruan dari jaringan saraf (neural network) dengan kecemerlangan inferensi fuzzy untuk memodelkan hubungan antara input dan output dengan fuzzy base sugeno, fuzzy rule base, dan jaringan syaraf tiruan (JST).…”
Section: Metode Analisis Neuro-fuzzy Anfisunclassified
“…This algorithm employs fuzzy sets to handle uncertainties and can generate an inputoutput data mapping based on human knowledge [28]. ANFIS has demonstrated remarkable results in various fields such as medical diagnosis, forecasting energy demand, and system performance [29][30][31][32][33][34]. The ANFIS applications above are only used for system modeling, parameter optimization, and forecasting but the existing literature mentioned the implementation of ANFIS on real systems remains limited.…”
Section: Introductionmentioning
confidence: 99%
“…The third type is short-term load forecasting (STLF). STLF mainly covers the period of one week, and refers to the assessment of load per hour during the day [5]. This type of prediction is more specific in time as it considers hourly prediction.…”
Section: Introductionmentioning
confidence: 99%