In order to establish a highly efficient P system for resolving clustering problems and overcome the computation incompleteness and implementation difficulty of P systems, an attractive clustering membrane system, integrated with enhanced particle swarm optimization (PSO) based on environmental factors and crossover operators and a distributed parallel computing model of monodirectional tissue-like P systems (MTP), is constructed and proposed, which is simply named ECPSO-MTP. In the proposed ECPSO-MTP, two kinds of evolution rules for objects are defined and introduced to rewrite and modify the velocity of objects in different elementary membranes. The velocity updating model uses environmental factors based on partitioning information and randomly replaces global best to improve the clustering performance of ECPSO-MTP. The crossover operator for the position of objects is based on given objects and other objects with crossover probability and is accomplished through the hybridization of the global best of elementary membranes to reject randomness. The membrane structure of ECPSO-MTP is abstracted as a network structure, and the information exchange and resource sharing between different elementary membranes are accomplished by evolutional symport rules with promoters for objects of MTP, including forward and backward communication rules. The evolution and communication mechanisms in ECPSO-MTP are executed repeatedly through iteration. At last, comparison experiments, which are conducted on eight benchmark clustering datasets from artificial datasets and the UCI Machine Learning Repository and eight image segmentation datasets from BSDS500, demonstrate the effectiveness of the proposed ECPSO-MTP.