Background
Three-dimensional T1 magnetization prepared rapid acquisition gradient echo (3D-T1-MPRAGE) is preferred in detecting brain metastases (BM) among MRI. We developed an automatic deep learning–based detection and segmentation method for BM (named BMDS net) on 3D-T1-MPRAGE images and evaluated its performance.
Methods
The BMDS net is a cascaded 3D fully convolution network (FCN) to automatically detect and segment BM. In total, 1652 patients with 3D-T1-MPRAGE images from 3 hospitals (n = 1201, 231, and 220, respectively) were retrospectively included. Manual segmentations were obtained by a neuroradiologist and a radiation oncologist in a consensus reading in 3D-T1-MPRAGE images. Sensitivity, specificity, and dice ratio of the segmentation were evaluated. Specificity and sensitivity measure the fractions of relevant segmented voxels. Dice ratio was used to quantitatively measure the overlap between automatic and manual segmentation results. Paired samples t-tests and analysis of variance were employed for statistical analysis.
Results
The BMDS net can detect all BM, providing a detection result with an accuracy of 100%. Automatic segmentations correlated strongly with manual segmentations through 4-fold cross-validation of the dataset with 1201 patients: the sensitivity was 0.96 ± 0.03 (range, 0.84–0.99), the specificity was 0.99 ± 0.0002 (range, 0.99–1.00), and the dice ratio was 0.85 ± 0.08 (range, 0.62–0.95) for total tumor volume. Similar performances on the other 2 datasets also demonstrate the robustness of BMDS net in correctly detecting and segmenting BM in various settings.
Conclusions
The BMDS net yields accurate detection and segmentation of BM automatically and could assist stereotactic radiotherapy management for diagnosis, therapy planning, and follow-up.
This study develops tomato disease detection methods based on deep convolutional neural networks and object detection models. Two different models, Faster R-CNN and Mask R-CNN, are used in these methods, where Faster R-CNN is used to identify the types of tomato diseases and Mask R-CNN is used to detect and segment the locations and shapes of the infected areas. To select the model that best fits the tomato disease detection task, four different deep convolutional neural networks are combined with the two object detection models. Data are collected from the Internet and the dataset is divided into a training set, a validation set, and a test set used in the experiments. The experimental results show that the proposed models can accurately and quickly identify the eleven tomato disease types and segment the locations and shapes of the infected areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.