Detecting and quantifying the size of choroidal neovascularization (CNV) is important for the diagnosis and assessment of neovascular age-related macular degeneration. Depth-resolved imaging of the retinal and choroidal vasculature by optical coherence tomography angiography (OCTA) has enabled the visualization of CNV. However, due to the prevalence of artifacts, it is difficult to segment and quantify the CNV lesion area automatically. We have previously described a saliency algorithm for CNV detection that could identify a CNV lesion area with 83% accuracy. However, this method works under the assumption that the CNV region is the most salient area for visual attention in the whole image and consequently, errors occur when this requirement is not met (e.g. when the lesion occupies a large portion of the image). Moreover, saliency image processing methods cannot extract the edges of the salient object very accurately. In this paper, we propose a novel and automatic CNV segmentation method based on an unsupervised and parallel machine learning technique named density cell-like P systems (DEC P systems). DEC P systems integrate the idea of a modified clustering algorithm into cell-like P systems. This method improved the accuracy of detection to 87.2% on 22 subjects and obtained clear boundaries of the CNV lesions.
Automatic pancreas segmentation is crucial to the diagnostic assessment of diabetes or pancreatic cancer. However, the relatively small size of the pancreas in the upper body, as well as large variations of its location and shape in retroperitoneum, make the segmentation task challenging. To alleviate these challenges, in this article, we propose a cascaded multitask 3-D fully convolution network (FCN) to automatically segment the pancreas. Our cascaded network is composed of two parts. The first part focuses on fast locating the region of the pancreas, and the second part uses a multitask FCN with dense connections to refine the segmentation map for fine voxel-wise segmentation. In particular, our multitask FCN with dense connections is implemented to simultaneously complete tasks of the voxel-wise segmentation and skeleton extraction from the pancreas. These two tasks are complementary, that is, the extracted skeleton provides rich information about the shape and size of the pancreas in retroperitoneum, which can boost the segmentation of pancreas. The multitask FCN is also designed to share Manuscript
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.