Ruminant production contributes to emissions of nitrogen (N) to the environment, principally ammonia (NH 3 ), nitrous oxide (N 2 O) and di-nitrogen (N 2 ) to air, nitrate (NO 3 2 ) to groundwater and particulate N to surface waters. Variation in dietary N intake will particularly affect excretion of urinary N, which is much more vulnerable to losses than is faecal N. Our objective is to review dietary effects on the level and form of N excreted in cattle urine, as well as its consequences for emissions of N 2 O. The quantity of N excreted in urine varies widely. Urinary N excretion, in particular that of urea N, is decreased upon reduction of dietary N intake or an increase in the supply of energy to the rumen microorganisms and to the host animal itself. Most of the N in urine (from 50% to well over 90%) is present in the form of urea. Other nitrogenous components include purine derivatives (PD), hippuric acid, creatine and creatinine. Excretion of PD is related to rumen microbial protein synthesis, and that of hippuric acid to dietary concentration of degradable phenolic acids. The N concentration of cattle urine ranges from 3 to 20 g/l. High-dietary mineral levels increase urine volume and lead to reduced urinary N concentration as well as reduced urea concentration in plasma and milk. In lactating dairy cattle, variation in urine volume affects the relationship between milk urea and urinary N excretion, which hampers the use of milk urea as an accurate indicator of urinary N excretion. Following its deposition in pastures or in animal houses, ubiquitous microorganisms in soil and waters transform urinary N components into ammonium (NH 4 1 ), and thereafter into NO 3 2 and ultimately in N 2 accompanied with the release of N 2 O. Urinary hippuric acid, creatine and creatinine decompose more slowly than urea. Hippuric acid may act as a natural inhibitor of N 2 O emissions, but inhibition conditions have not been defined properly yet. Environmental and soil conditions at the site of urine deposition or manure application strongly influence N 2 O release. Major dietary strategies to mitigating N 2 O emission from cattle operations include reducing dietary N content or increasing energy content, and increasing dietary mineral content to increase urine volume. For further reduction of N 2 O emission, an integrated animal nutrition and excreta management approach is required.Keywords: nitrogen, urine, cattle, nitrous oxide, mitigation
ImplicationsCattle contribute to global warming through emission of nitrous oxide (N 2 O) from urine and faeces. Urinary nitrogen (N) is much more susceptible to gaseous losses than faecal N. To reduce urinary N excretion and N 2 O emission and improve N efficiency of cattle, dietary levels of N should be decreased and an optimal balance between N and energy substrates in the diet should be aimed at. Increasing urine volume by increased dietary mineral contents appears a promising N 2 O mitigation strategy, particularly in pasture. Further reduction of effective mitigation strategies...