Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)
Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
Citation for published version (APA):Fil, A., Nardon, E., Hoelzl, M., Huijsmans, G. T. A., Orain, F., Becoulet, M., ... . Threedimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in JET. Physics of Plasmas, 22, 062509-1/18. DOI: 10.1063/1.4922846
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in JET JOREK 3D non-linear MHD simulations of a D 2 Massive Gas Injection (MGI) triggered disruption in JET are presented and compared in detail to experimental data. The MGI creates an overdensity that rapidly expands in the direction parallel to the magnetic field. It also causes the growth of magnetic islands (m=n ¼ 2=1 and 3/2 mainly) and seeds the 1/1 internal kink mode. O-points of all island chains (including 1/1) are located in front of the MGI, consistently with experimental observations. A burst of MHD activity and a peak in plasma current take place at the same time as in the experiment. However, the magnitude of these two effects is much smaller than in the experiment. The simulated radiation is also much below the experimental level. As a consequence, the thermal quench is not fully reproduced. Directions for progress are identified. Radiation from impurities is a good candidate. V C 2015 AIP Publishing LLC.[http://dx