The intermixed cropland, grassland, and wetland ecosystems of the upper midwestern United States combine to provide a suite of valuable ecological services. Grassland and wetland losses in the upper midwestern United States have been extensive, but government-funded conservation programs have protected and restored hundreds of thousands of acres of wetland and grassland habitat in the region. The value of restored wetlands in agricultural fields is complex, and the USDA Natural Resource Conservation Service, Conservation Effects Assessment Project (CEAP) has been lacking the methodology to include these conservation practices in their analyses. Our aim is to develop a reproducible methodology for simulating wetlands within the CEAP cropland modeling framework used to evaluate other agricultural conservation practices. Furthermore, we evaluate the effect of using upland conservation practices on the functioning of restored wetlands. By simulating the addition of a depressional wetland that effectively removes 6% of the field from crop production, we obtained a 15% reduction in annual runoff and a 29% and 28% reduction in mean annual nitrogen (N) and phosphorus (P) losses, respectively. The presence of the depressional wetland in the field is estimated to also reduce edge-of-field losses of sediments by 20% and sediment-bound N and P by 19% and 23%, respectively. Additionally, adding a grass filter strip around the wetland greatly decreased sediment inputs to the wetland, increasing the effective life of the wetland, in terms of its ability to perform valued services, by decades to centuries. Our method for modeling depressional wetlands embedded in cropped fields provides a means to quantify the effects of wetland conservation practices on field-level losses for regional assessments, such as the CEAP.