The Runx1 transcription factor, known for its essential role normal hematopoiesis, was reported in limited studies to be mutated or associated with human breast tumor tissues. Runx 1 increases concomitant with disease progression in the MMTV-PyMT transgenic mouse model of breast cancer. Compelling questions relate to mechanisms that regulate Runx1 expression in breast cancer. Here, we tested the hypothesis that dysregulation of Runx1-targeting microRNAs (miRNAs) allows for pathologic increase of Runx1 during breast cancer progression. Microarray profiling of the MMTV-PyMT model revealed significant down-regulation of numerous miRNAs predicted to target Runx1. One of these, miR-378, was inversely correlated with Runx1 expression during breast cancer progression in mouse, and in human breast cancer cell lines MCF7 and triple negative MDA-MB-231 that represent early and late stage disease, respectively. MiR-378 is nearly absent in MDA-MB-231 cells. Luciferase reporter assays revealed that miR-378 binds the Runx1 3′UTR and inhibits Runx1 expression. Functionally, we demonstrated that ectopic expression of miR-378 in MDA-MB-231 cells inhibited Runx1 and suppressed migration and invasion; while inhibition of miR-378 in MCF7 cells increased Runx1 levels and cell migration. Depletion of Runx1 in late stage breast cancer cells resulted in increased expression of both the miR-378 host gene PPARGC1B and pre-miR-378, suggesting a feedback loop. Taken together, our study identifies a novel and clinically relevant mechanism for regulation of Runx1 in breast cancer that is mediated by a PPARGC1B-miR-378-Runx1 regulatory pathway. Our results highlight the translational potential of miRNA replacement therapy for inhibiting Runx1 in breast cancer.