BackgroundHigher-order chromatin structure is often perturbed in cancer and other pathological states. Although several genetic and epigenetic differences have been charted between normal and breast cancer tissues, changes in higher-order chromatin organization during tumorigenesis have not been fully explored. To probe the differences in higher-order chromatin structure between mammary epithelial and breast cancer cells, we performed Hi-C analysis on MCF-10A mammary epithelial and MCF-7 breast cancer cell lines.ResultsOur studies reveal that the small, gene-rich chromosomes chr16 through chr22 in the MCF-7 breast cancer genome display decreased interaction frequency with each other compared to the inter-chromosomal interaction frequency in the MCF-10A epithelial cells. Interestingly, this finding is associated with a higher occurrence of open compartments on chr16–22 in MCF-7 cells. Pathway analysis of the MCF-7 up-regulated genes located in altered compartment regions on chr16–22 reveals pathways related to repression of WNT signaling. There are also differences in intra-chromosomal interactions between the cell lines; telomeric and sub-telomeric regions in the MCF-10A cells display more frequent interactions than are observed in the MCF-7 cells.ConclusionsWe show evidence of an intricate relationship between chromosomal organization and gene expression between epithelial and breast cancer cells. Importantly, this work provides a genome-wide view of higher-order chromatin dynamics and a resource for studying higher-order chromatin interactions in two cell lines commonly used to study the progression of breast cancer.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0768-0) contains supplementary material, which is available to authorized users.
Progression of breast cancer to metastatic bone disease is linked to deregulated expression of the transcription factor Runx2. Therefore, our goal was to evaluate the potential for clinical use of Runx2-targeting microRNAs (miRNAs) to reduce tumor growth and bone metastatic burden. Expression analysis of a panel of miRNAs regulating Runx2 revealed a reciprocal relationship between the abundance of Runx2 protein and two miRNAs, miR-135 and miR-203. These miRNAs are highly expressed in normal breast epithelial cells where Runx2 is not detected, and absent in metastatic breast cancer cells and tissue biopsies that express Runx2. Reconstituting metastatic MDA-MB-231-Luc cells with miR-135 and miR-203 reduced the abundance of Runx2 and expression of the metastasis-promoting Runx2 target genes IL-11, MMP-13, and PTHrP. Additionally, tumor cell viability was decreased and migration suppressed in vitro. Orthotopic implantation of MDA-MB-231-luc cells delivered with miR-135 or miR-203, followed by an intratumoral administration of the synthetic miRNAs reduced the tumor growth and spontaneous metastasis to bone. Furthermore, intratibial injection of these miRNA-delivered cells impaired tumor growth in the bone environment and inhibited bone resorption. Importantly, reconstitution of Runx2 in MDA-MB-231-luc cells delivered with miR-135 and miR-203 reversed the inhibitory effect of the miRNAs on tumor growth and metastasis. Thus, we have identified that aberrant expression of Runx2 in aggressive tumor cells is related to the loss of specific Runx2-targeting miRNAs and that a clinically relevant replacement strategy by delivery of synthetic miRNAs is a candidate therapeutic approach to prevent metastatic bone disease by this route.
Runx1 is a well characterized transcription factor essential for hematopoietic differentiation and Runx1 mutations are the cause of leukemias. Runx1 is highly expressed in normal epithelium of most glands and recently has been associated with solid tumors. Notably, the function of Runx1 in the mammary gland and how it is involved in initiation and progression of breast cancer is still unclear. Here we demonstrate the consequences of Runx1 loss in normal mammary epithelial and breast cancer cells. We first observed that Runx1 is decreased in tumorigenic and metastatic breast cancer cells. We also observed loss of Runx1 expression upon induction of epithelial-mesenchymal transition (EMT) in MCF10A (normal-like) cells. Furthermore depletion of Runx1 in MCF10A cells resulted in striking changes in cell shape, leading to mesenchymal cell morphology. The epithelial phenotype could be restored in breast cancer cells by re-expressing Runx1. Analyses of breast tumors and patient data revealed that low Runx1 expression is associated with poor prognosis and decreased survival. We addressed mechanisms for the function of Runx1 in maintaining the epithelial phenotype and find Runx1 directly regulates E-cadherin; and serves as a downstream transcription factor mediating TGFβ signaling. We also observed through global gene expression profiling of growth factor depleted cells that induction of EMT and loss of Runx1 is associated with activation of TGFβ and WNT pathways. Thus these findings have identified a novel function for Runx1 in sustaining normal epithelial morphology and preventing EMT and suggest Runx1 levels could be a prognostic indicator of tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.