The transition metal catalyzed direct site‐selective carbon –hydrogen functionalization is ubiquitous in organic synthesis and has reached an impressive level of sophistication and efficiency emerging as a powerful synthetic strategy for C–C bond and C–X bond formation to access various useful arylated organic molecules. For the past two decades, directing group strategy has been used for selective activation and functionalization of certain inert C–H bonds. Despite the enormous development in this field, still, the majority of systems require two redundant steps, i. e. installation and removal of DGs. To overcome these limitations, recently, traceless and multitasking groups were invented as a partial solution to DG release however installation still remains unsolved. Ideally, use of the catalytic directing group, which can be reversibly linked to the substrate and can serve as an efficient directing role would circumvent this problem and is considered as one of the most efficient and powerful strategies for the non‐activated C–H functionalization (C(sp2)–H or C(sp3)–H). In this review, we describe the enormous advances in this field for direct selective C–H functionalization without involving additional steps, i. e. installation and removal of directing groups and also discuss less explored but significant non‐covalent interactions such as hydrogen bonding or ion pairing, which helps to control the selectivity of a substrate in a catalytic organic reaction.