Aryl thiols can be selectively converted to sulfonimidates or sulfonamides with three new S-X connections being made selectively in one pot. Using hypervalent iodine reagents in the presence of ammonium carbamate, NH- and O-groups are transferred under mild and practical conditions. Reducing the loading of ammonium carbamate changed the product distribution, converting the sulfonimidate to the sulfonamide. Studies into the possible intermediate species are presented, suggesting that multiple pathways may be possible via sulfinate esters, or related intermediates, with each species forming the same products.
A catalytic meta-selective C-H functionalization of 2-phenylpyridines using a range of tertiary halides is described. The protocol is simple to perform and uses commercially available reagents to construct challenging quaternary carbon centres in a regioselective manner. Preliminary studies suggest the C-H functionalization proceeds through a radical process directed via a remote σ-activation.
C−H Functionalization of amines is a prominent challenge due to the strong complexation of amines to transition metal catalysts, and therefore typically requires derivatization at nitrogen with a directing group. Transient directing groups (TDGs) permit C−H functionalization in a single operation, without needing these additional steps for directing group installation and removal. Here we report a palladium catalyzed γ‐C−H arylation of amines using catalytic amounts of alkyl acetals as transient activators (e.g. commercially available (2,2‐dimethoxyethoxy)benzene). This simple additive enables arylation of amines with a wide range of aryl iodides. Key structural features of the novel TDG are examined, demonstrating an important role for the masked carbonyl and ether functionalities. Detailed kinetic (RPKA) and mechanistic investigations determine the order in all reagents, and identify cyclopalladation as the turnover limiting step. Finally, the discovery of an unprecedented off‐cycle free‐amine directed
ϵ
‐cyclopalladation of the arylation product is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.