The interplay between the molecular shape and the intermolecular interaction plays a decisive role in self-assembled structures. Recently, inherent randomness of low ordered assemblies, resulting from lack of short-and long-range periodicities, has attracted significant attention due to the unique structural, electronic, and mechanical properties. Here, we present procrystalline self-assemblies of pentaphenyl cyclopentadienyl derivatives on Ag(111) and Au(111) with scanning tunneling microscopy, operating at 4.3 K under ultrahigh vacuum conditions. Two examples, using 5-fold symmetric molecules substituted with methyl or fluorine groups, show that weak interactions, such as π−π stacking, CH−π interactions, and CH•••F hydrogen bonding, play a pivotal role in formation of the procrystalline assembly. Our results may give insights into the intricate relationship between the molecular shape and the intermolecular interaction in the formation of non-crystalline assemblies.