Petroleum product fumes (PPFs) containing toxic organic components are pervasive in the environment, emanating from anthropogenic activities, including petroleum exploration and utilization by end-user activities from petrol–gasoline stations. Petrol station attendants are exposed to PPF through inhalation and dermal contact with consequent toxicological implications. We investigated the effects of chronic exposure (60 and 90 days) to petrol (P), kerosene (K) and diesel (D) alone and combined exposure to petrol, kerosene and diesel (PKD) fumes on hepatotoxicity, haematological function and oxidative stress in rats. Following sacrifice, we evaluated hepatic damage biomarkers, blood glucose, oxidative stress and haematological function. Chronic exposure to PPF significantly increased organo-somatic indices, blood glucose, biomarkers of hepatic toxicity and oxidative stress in an exposure duration-dependent manner. There was a simultaneous decrease in the protective capacity of antioxidants. Furthermore, exposure to PPF increased pro-inflammatory biomarkers in rats (90 > 60 days). Regardless of exposure duration, plateletcrit, mean platelet volume, platelet distribution width and red cell distribution width in the coefficient of variation increased, whereas red blood cell count, haemoglobin, packed cell volume, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, white blood cell, lymphocyte, monocyte–basophil–eosinophil mixed counts and platelet count decreased after 60 and 90 days exposure. Microscopic examination of the liver demonstrated hepatic pathological changes paralleling the duration of exposure to PKD fumes. However, the injury observed was lesser to that of rats treated with the diethylnitrosamine – positive control. Our results expanded previous findings and further demonstrated the probable adverse effect on populations’ health occasioned by persistent exposure to PPF. Individuals chronically exposed by occupation to PPF may be at greater risk of developing disorders promoted by continuous oxido-inflammatory perturbation and suboptimal haematological–immunologic function – thereby enabling a permissive environment for pathogenesis notwithstanding the limitation of quantifying PPF absolute values in our model system.