Sodium butyrate (NaB), when added to cell cultures, produces a variety of morphological and biochemical changes. We examined its effects, in nM concentrations, on the expression of two glioma cell-associated proteins, glial fibrillary acidic protein (GFAP) and S-100 protein in human glioma-derived cell line (RF), and of S-100 protein in the C6 rat glioma cell line. GFAP levels decreased by about 50% in the RF cell line, and S-100 protein levels decreased protein levels decreased by about 40% after treatment with 1 mM NaB for 48 h. In the C6 rat glioma cell line, isoproterenol with theophylline was found to increase S-100 levels by two-fold over basal levels. NaB was found to inhibit the induction of S-100 protein but exhibited no effect on the basal levels of the protein. Other short chain fatty acids, including sodium propionate and sodium isobutyrate, exhibited partial inhibitory activity. NaB, at an EC50 of 1 mM, was also found to inhibit both the beta-adrenergic and the forskolin-mediated increase in cAMP levels in these cells. This suggests that NaB may inhibit cells from expressing S-100 protein by attenuating cAMP levels.