The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components. The seeds of Descurainia sophia (SDS) are utilized in China as a cough and asthma relieving agent. Herein, a dimension-enhanced integral approach, by combining ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) and intelligent peak annotation, was developed to rapidly characterize the multicomponents from SDS. Good chromatographic separation was achieved within 38 min on a UPLC CSH C18 (2.1 × 100 mm, 1.7 μm) column which was eluted by 0.1% formic acid in water (water phase) and acetonitrile (organic phase). Collision-induced dissociation-MS 2 data were acquired by the data-independent high-definition MS E (HDMS E ) in both the negative and positive electrospray ionization modes. A major components knockout strategy was applied to improve the characterization of those minor ingredients by enhancing the injection volume. Moreover, a self-built chemistry library was established, which could be matched by the UNIFI software enabling automatic peak annotation of the obtained HDMS E data. As a result of applying the intelligent peak annotation workflows and further confirmation process, a total of 53 compounds were identified or tentatively characterized from the SDS, including 29 flavonoids, one uridine derivative, four glucosides, one lignin, one phenolic compound, and 17 others. Notably, four-dimensional information related to the structure (e.g., retention time, collision cross section, MS 1 and MS 2 data) was obtained for each component by the developed integral approach, and the results would greatly benefit the quality control of SDS.
KEYWORDSDescurainia sophia; multicomponent characterization; ultra-high performance liquid chromatography; ion mobility/quadrupole time-of-flight mass spectrometry; high-definition MS E ; flavonoid