Various immunopathological events characterize the systemic acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Moreover, it has been reported that coronavirus disease 2019 (COVID-19) vaccination and infection by SARS-CoV-2 induce humoral immunity mediated by B-cell-derived antibodies and cellular immunity mediated by T cells and memory B cells. Immunoglobulins, cytokines, and chemokines play an important role in shaping immunity in response to infection and vaccination. Furthermore, different vaccines have been developed to prevent COVID-19. Therefore, this research aimed to analyze and compare Fourier-transform infrared (FTIR) spectra of vaccinated people with a positive (V-COVID-19 group) or negative (V-Healthy group) real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) test, evaluating the immunoglobulin and cytokine content as an immunological response through FTIR spectroscopy. Most individuals that integrated the V-Healthy group (88.1%) were asymptomatic; on the contrary, only 28% of the V-COVID-19 group was asymptomatic. Likewise, 68% of the V-COVID-19 group had at least one coexisting illness. Regarding the immunological response analyzed through FTIR spectroscopy, the V-COVID-19 group showed a greater immunoglobulins G, A, and M (IgG, IgA, and IgM) content, as well as the analyzed cytokines interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-ɑ), and interleukins 1β, 6, and 10 (IL-1β, IL-6, and IL-10). Therefore, we can state that it was possible to detect biochemical changes through FTIR spectroscopy associated with COVID-19 immune response in vaccinated people.