Proteinaceous wastes from the fishery process are an abundant renewable resource for the recovery of a variety of high-value products. This work attempted to utilize several proteinaceous wastes to produce proteases using the Streptomyces speibonae TKU048 strain. Among different possible carbon and nitrogen sources, the protease productive activity of S. speibonae TKU048 was optimal on 1% tuna head powder. Further, the casein/gelatin/tuna head powder zymography of the crude enzyme revealed the presence of three/nine/six proteases, respectively. The crude-enzyme cocktail of S. speibonae TKU048 exhibited the best proteolytic activity at 70 °C and pH = 5.8. Sodium dodecyl sulfate strongly enhanced the proteolytic activity of the cocktail, whereas FeCl3, CuSO4, and ethylenediaminetetraacetic acid could completely inhibit the enzyme activity. Additionally, the crude-enzyme cocktail of S. speibonae TKU048 could efficiently enhance the 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities of all tested proteinaceous materials including the head, viscera, and meat of tuna fish; the head, viscera, and meat of tilapia fish; the head, meat, and shell of shrimp; squid pen; crab shell; and soybean. Taken together, S. speibonae TKU048 revealed potential in the reclamation of proteinaceous wastes for protease production and antioxidant preparation.