“…It extends classical signal processing concepts such as signals, filters, Fourier transform, frequency response, low-and highpass filtering, from signals residing on regular lattices to data residing on general graphs; for example, a graph signal models the data value assigned to each node in a graph. Recent work involves sampling for graph signals [9], [10], [11], [12], recovery for graph signals [13], [14], [15], [16], representations for graph signals [17], [18] principles on graphs [19], [20], stationary graph signal processing [21], [22], graph dictionary construction [23], graph-based filter banks [24], [25], [26], [27], denoising on graphs [24], [28], community detection and clustering on graphs [29], [30], [31], distributed computing [32], [33] and graph-based transforms [34], [35], [36]. We here consider detecting localized categorical attributes on graphs.…”