The integrity of sand control method is often compromised as wells get older and the field becomes more mature. An operator in East Malaysia pursued a cost-effective alternative remedial sand-control solution to restore the functionality of its sand control completion and provide unhindered oil production in a well. The well, located offshore Sarawak Malaysia, was a single string oil producer completed in 1987 with gravel pack and screens. It was a producing well for several years until the gravel pack completion failed and the well started to produce excessive sand. The well was beaned down (BD) to achieve an acceptable sand production limit by the operator of below 15 pound per thousand barrels (pptb). The initial remedial sand control measure was to install a thru-tubing screen, hung inside the production tubing. The thru-tubing screen failed to control the formation sand and a second 200 micron thru tubing screen was installed. That screen managed to control the sand production at acceptable levels but induced significant pressure drop, which reduced the oil production from the optimum level of production.Workover (WO) operations would involve pulling the existing completion, and re-gravel packing the zone would be costly. In addition to cost, induced mechanical skin in a gravel pack might not be lower than thru-tubing screen application. Chemical consolidation treatments using solvent-based resins historically have been used successfully as alternatives to remedial sand control, although their application, has typically been limited to short intervals.An aqueous based consolidation resin was developed that provides some advantages compared to conventional solvent based resin systems. The aqueous based resin system uses an internally cured water-based epoxy resin. Unlike the solvent based resin systems, which have a low flash point, the aqueous base consolidation resin system is not flammable. It is safer and less complex operationally. The consolidation-fluid mix can also be foamed for diversion purposes to treat wells with relatively large variations in permeability over longer zones compared to the solvent based resins. This paper describes the treatment background, engineering approach, laboratory testing, fluid design stages, quality assurance/ quality control (QA/QC) procedures, and the treatment execution for the chosen well. The field trial showed no sand was produced after treatment. In fact, the production rate was twice that of the production rate with the thru tubing screen in place. The promising result from this well creates new opportunities for simple, environmentally acceptable, and cost-effective remedial sand-control solutions for the operator.