1981
DOI: 10.1070/sm1981v038n01abeh001042
|View full text |Cite
|
Sign up to set email alerts
|

Sandwiches in Lie Algebras

Abstract: Applying the AdS/CFT correspondence, the expansion of the heavy-quark potential of N = 4 supersymmetric Yang-Mills theory at large N c is carried out to the sub-leading term in the large 't Hooft coupling at zero temperature. The strong coupling corresponds to the semi-classical expansion of the string-sigma model, the gravity dual of the Wilson loop operator, with the sub-leading term expressed in terms of functional determinants of fluctuations. The singularities of these determinants are examined and their … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
14
0
2

Year Published

1984
1984
2019
2019

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 19 publications
(16 citation statements)
references
References 2 publications
0
14
0
2
Order By: Relevance
“…Sandwich elements are used in the classification of simple Lie algebras in small characteristics [Premet and Strade 1997]; they occur in the modular Lie algebras of Cartan type, such as the Witt algebras. Sandwich elements were originally introduced in relation with the restricted Burnside problem [Kostrikin 1981]. An MSC2000: primary 17B20; secondary 14D20, 17B67, 17B01.…”
Section: Introduction and Main Resultsmentioning
confidence: 99%
“…Sandwich elements are used in the classification of simple Lie algebras in small characteristics [Premet and Strade 1997]; they occur in the modular Lie algebras of Cartan type, such as the Witt algebras. Sandwich elements were originally introduced in relation with the restricted Burnside problem [Kostrikin 1981]. An MSC2000: primary 17B20; secondary 14D20, 17B67, 17B01.…”
Section: Introduction and Main Resultsmentioning
confidence: 99%
“…These references are an essential (hidden) part of the proof. This Jordan polynomial gives rise to a regular divided polynomial whose every value is divided ad-nilpotent of degree 2, i.e., is a sandwich (see [Kos2], [KZ]). …”
Section: Divided Polynomialsmentioning
confidence: 99%
“…We use Lemma 3.4 to establish existence of a regular divided polynomial whose every value is divided ad-nilpotent of degree k ≥ 3. Then we use , [Kos2], [Zel8]) to reduce k to 3.…”
Section: Divided Polynomialsmentioning
confidence: 99%
“…Он сказал, что устранил пробел и собирается написать книгу с подробным доказательством. С целью устранения пробела, на который указывали читатели, Кострикин в 1979 г. опубликовал дополни-тельную статью [23] к работе [16]. Только через 10 лет после нашего разговора он представил в печать монографию [25], которую я рецензировал по просьбе издательства "Наука" (см.…”
unclassified
“…раздел 8). В книге [25] доказательство основного результата Кострикина является вполне убедительным, хотя оно, как и в ста-тьях [16] и [23], проводится от противного и в принципе не может дать эффек-тивной оценки для ступени нильпотентности и для порядков групп R(m, p).…”
unclassified