This paper focuses on vessel detection through the fusion of synthetic aperture radar (SAR) images acquired from spaceborne–airborne collaborative observations. The vessel target detection task becomes more challenging when it features inshore interferences and structured and shaped targets. We propose a new method, based on target proposal and polarization information exploitation (TPPIE), to fuse the spaceborne–airborne collaborative SAR images for accurate vessel detection. First, a new triple-state proposal matrix (TSPM) is generated by combining the normed gradient-based target proposal and the edge-based morphological candidate map. The TSPM can be used to extract the potential target regions, as well as filtering out the sea clutter and inshore interference regions. Second, we present a new polarization feature, named the absolute polarization ratio (APR), to exploit the intensity information of dual-polarization SAR images. In the APR map, the vessel target regions are further enhanced. Third, the final fused image with enhanced targets and suppressed backgrounds (i.e., improved target-to-clutter ratio; TCR) is attained by taking the Hadamard product of the intersected TSPM from multiple sources and the composite map exploiting the APR feature. Experimental analyses using Gaofen-3 satellite and unmanned aerial vehicle (UAV) SAR imagery indicate that the proposed TPPIE fusion method can yield higher TCRs for fused images and better detection performance for vessel targets, compared to commonly used image fusion approaches.