The use of electronic article surveillance (EAS) systems has become popular in many public sites. As a consequence, concern has risen about infant exposure to magnetic fields (MFs) from this kind of device. To evaluate infant exposure to MFs of an EAS system (operating at 125 kHz and 13.56 MHz), we numerically compared dosimetric results among adult, child and infant models. Results revealed that postures insignificantly influenced dosimetric results if there was a similar cross-sectional area under exposure. Although safety limits are unlikely to be exceeded, the infant has higher SAR values for brain and central nervous system tissues compared with adult (1.5x at 125 kHz and 112x at 13.56 MHz), which deserve further investigation. Infant's specific anatomy (e.g., non-proportionally large head and high fat content) did not induce higher SAR values. The numerical models developed in the study (stroller and postured infant models) could be freely used for nonprofit academic research.