The antioxidant capacity of individual anthocyanins is well established. Less information is available however, about the relative contribution to which specific anthocyanins in a complex mixture affect total antioxidant capacity in different soft fruit sources; especially those that share a similar pathway for anthocyanin synthesis. The objectives of this work were to compare the antioxidant capacity of two different soft fruits, blackcurrant and grape, which share similarities in anthocyanin biosynthetic pathways but are composed of distinctly different anthocyanin profiles.Anthocyanin composition profiles of grape and blackcurrant were characterized by High Performance Liquid Chromatography/Mass Spectrometry (HPLC). ORAC (Oxygen Radical Absorbance Capacity) and ABTS (2,2'-azinobis 3-ethylbenzothiazoline-6-sulfonic acid) assays were used for antioxidant activity quantification. An anthocyanin antioxidant capacity index (AACI) was derived from the product of antioxidant (ORAC) activity for each of major anthocyanins present in blackcurrant and grape, and the sum of anthocyanins recovered from purified fruit extracts to determine the extent that the total antioxidant activity derived from different anthocyanin combinations.Blackcurrant contained four predominant anthocyanins, cyanidin3-glucoside (Cy3G), delphinidin3-glucoside (Dp3G), cyanidin3-rutinoside (Cy3R), and delphinidin3-rutinoside (Dp3R). Major anthocyanins found in grape were malvidin3-glucoside (Mv3G), Dp3G, Cy3G, petunidin3-glucoside (Pt3G), and peonidin3-glucoside (Pn3G). A greater (p<0.05) total antioxidant capacity existed for blackcurrant compared to grape when measured by ORAC and ABTS methods. An antioxidant synergy was confirmed for blackcurrant and wind grape thus indicating that this phenomenon is a factor for characterizing total antioxidant activity in both blackcurrant and wine grape.