The considerable mathematical knowledge encoded by the Flyspeck project is combined with external automated theorem provers (ATPs) and machine-learning premise selection methods trained on the Flyspeck proofs, producing an AI system capable of proving a wide range of mathematical conjectures automatically. The performance of this architecture is evaluated in a bootstrapping scenario emulating the development of Flyspeck from axioms to the last theorem, each time using only the previous theorems and proofs. It is shown that 39 % of the 14185 theorems could be proved in a push-button mode (without any high-level advice and user interaction) in 30 seconds of real time on a fourteen-CPU workstation. The necessary work involves: (i) an implementation of sound translations of the HOL Light logic to ATP formalisms: untyped first-order, polymorphic typed first-order, and typed higher-order, (ii) export of the dependency information from HOL Light and ATP proofs for the machine learners, and (iii) choice of suitable representations and methods for learning from previous proofs, and their integration as advisors with HOL Light. This work is described and discussed here, and an initial analysis of the body of proofs that were found fully automatically is provided.