The Intuitionistic Logic Theorem Proving (ILTP) library provides a platform for testing and benchmarking automated theorem proving (ATP) systems for intuitionistic propositional and first-order logic. It includes about 2,800 problems in a standardized syntax from 24 problem domains. For each problem an intuitionistic status and difficulty rating were obtained by running comprehensive tests of currently available intuitionistic ATP systems on all problems in the library. Thus, for the first time, the testing and evaluation of ATP systems for intuitionistic logic have been put on a firm basis.
This extended abstract presents several new automated theorem proving systems for first-order modal logics and sketches their calculi and working principles. The abstract also summarizes the results of a recent comparative evaluation of these new provers.
Abstract. First-order modal logics (FMLs) can be modeled as natural fragments of classical higher-order logic (HOL). The FMLtoHOL tool exploits this fact and it enables the application of off-the-shelf HOL provers and model finders for reasoning within FMLs. The tool bridges between the qmf-syntax for FML and the TPTP thf0-syntax for HOL. It currently supports logics K, K4, D, D4, T, S4, and S5 with respect to constant, varying and cumulative domain semantics. The approach is evaluated in combination with a meta-prover for HOL, which sequentially schedules various HOL reasoners. The resulting system is very competitive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.