For twenty years the Nuprl ("new pearl") system has been used to develop software systems and formal theories of computational mathematics. It has also been used to explore and implement computational type theory (CTT)-a formal theory of computation closely related to Martin-Löf's intuitionistic type theory (ITT) and to the calculus of inductive constructions (CIC) implemented in the Coq prover.This article focuses on the theory and practice underpinning our use of Nuprl for much of the last decade. We discuss innovative elements of type theory, including new type constructors such as unions and dependent intersections, our theory of classes, and our theory of event structures.We also discuss the innovative architecture of Nuprl as a distributed system and as a transactional database of formal mathematics using the notion of abstract object identifiers. The database has led to an independent project called the Formal Digital Library, FDL, now used as a repository for Nuprl results as well as selected results from HOL, MetaPRL, and PVS. We discuss Howe's set theoretic semantics that is used to relate such disparate theories and systems as those represented by these provers.
Abstract. The Nuprl system is a framework for reasoning about mathematics and programming. Over the years its design has been substantially improved to meet the demands of large-scale applications. Nuprl LPE, the newest release, features an open, distributed architecture centered around a flexible knowledge base and supports the cooperation of independent formal tools. This paper gives a brief overview of the system and the objectives that are addressed by its new architecture.
The Intuitionistic Logic Theorem Proving (ILTP) library provides a platform for testing and benchmarking automated theorem proving (ATP) systems for intuitionistic propositional and first-order logic. It includes about 2,800 problems in a standardized syntax from 24 problem domains. For each problem an intuitionistic status and difficulty rating were obtained by running comprehensive tests of currently available intuitionistic ATP systems on all problems in the library. Thus, for the first time, the testing and evaluation of ATP systems for intuitionistic logic have been put on a firm basis.
Abstract. We present a uniform algorithm for transforming matrix proofs in classical, constructive, and modal logics into sequent style proofs. Making use of a similarity between matrix methods and Fitting's prefixed tableaus we first develop a procedure for extracting a prefixed sequent proof from a given matrix proof. By considering the additional restrictions on the order of rule applications we then extend this procedure into an algorithm which generates a conventional sequent proof. Our algorithm is based on unified representations of matrix characterizations for various logics as well as of prefixed and usual sequent calculi. The peculiarities of a logic are encoded by certain parameters which are summarized in tables to be consulted by the algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.