2017
DOI: 10.1088/1755-1315/54/1/012037
|View full text |Cite
|
Sign up to set email alerts
|

Satellite radiance data assimilation for rainfall prediction in Java Region

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 5 publications
0
3
0
1
Order By: Relevance
“…Model asimilasi data satelit adalah model asimilasi yang menambahkan data radiasi suhu puncak awan dalam perhitungan model WRF (Sagita, 2017). Hasil prediksi menggambarkan adanya distribusi hujan yang lokasinya hampir serupa seperti yang digambarkan oleh hasil model lainnya dengan intensitas dan luasan yang cenderung tidak besar.…”
Section: Metodologiunclassified
“…Model asimilasi data satelit adalah model asimilasi yang menambahkan data radiasi suhu puncak awan dalam perhitungan model WRF (Sagita, 2017). Hasil prediksi menggambarkan adanya distribusi hujan yang lokasinya hampir serupa seperti yang digambarkan oleh hasil model lainnya dengan intensitas dan luasan yang cenderung tidak besar.…”
Section: Metodologiunclassified
“…Lawrence et al [10] pointed out that microwave radiances sensitive to atmospheric temperature and humidity successfully reduced error of initial conditions for the forecast models. The direct assimilation of microwave radiance data can give a certain impact on the background filed, such as the temperature, humidity, and flow fields, consequently further improved the quantitative prediction of heavy rainfall [11][12][13]. Even for the forecasting of hurricanes, microwave radiances from polar satellites can also provide unique information on the large scale atmospheric conditions which is crucial and helpful in reducing the time and location errors of a hurricane's track [14].…”
Section: Introductionmentioning
confidence: 99%
“…Zou et al [22] assimilated satellite radiances of microwave humidity sounding to forecast precipitation events with a new cloud detection algorithm and increased the threat scores of 3-h accumulated rainfall by about 50% after 3-6 h of the forecast range. Sagita et al [23] investigated the impact of satellite radiances from several instruments on rainfall prediction in the Java region and pointed out that a higher accuracy of precipitation forecast could be obtained with radiance data assimilation in the system, even though the contribution from satellite observations was small. Wang et al [24] suggested that the assimilation of water vapor radiances from the Advanced Himawari Imger (AHI) of Himawari-8 improved the initial wind and humidity fields in the forecast of heavy rainfall, which contributed to the accuracy of rainstorm prediction in the first 3-6 h.…”
Section: Introductionmentioning
confidence: 99%