In this paper we discuss similar problems posed by I. A. Rus in Fixed point theory in partial metric spaces (Analele Univ. de Vest Timişoara, Mat.-Inform., 46 (2008), 149–160) and in Kasahara spaces (Sci. Math. Jpn., 72 (2010), No. 1, 101–110). We start our considerations with an overview of generalized metric spaces with \mathbb{R}_+-valued distance and of generalized contractions on such spaces. After that we give some examples of conversions between generalized metric spaces and standard metric spaces with applications in fixed point theory. Some possible applications to theoretical informatics are also considered.