Mesenchymal stem cells (MSCs) are known to be effective in wound healing, but not much has been reported on quantitative correlations between MSCs injected into the wound site and MSCs that actually participate in wound healing. This study traced MSCs participating in wound healing by using small intestinal submucosa (SIS) as a cell carrier, identified their moving path and calculated the number of MSCs involved in wound healing. First, MSCs were isolated from the nude mouse and 1 Â 10 6 cells were seeded onto the centre of the SIS. MSC-seeded SIS complexes were injected onto full-thickness skin wounds made on the dorsum of nude mice. Tracing of MSC-seeded SIS complex transplanted to the wound site revealed that 27.6% of the MSCs were migrated to the wound site at the first attempt. Second, repeated injection of additional MSCs did not increase the number of MSCs participating in wound healing beyond a certain constant maximum amount. The number of MSCs present in the wound site remains constant in the range 2-3 Â 10 5 from day 1 to day 10. The expression of skin regenerationrelated growth factors was confirmed by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). MSCs participating in wound healing were found not only to suppress inflammation of the wound but also to increase the skin regeneration-related growth factors that enable the recovery of the skin. An optimal number of about 3 Â 10 5 MSCs injected into the site was found to adapt themselves to the skin wound-healing process effectively.