Growth in the Li-ion battery market continues to accelerate, driven by increasing need for economic energy storage in the electric vehicle market. Electrode manufacture is the first main step in production and in an industry dominated by slurry casting, much of the manufacturing process is based on trial and error, know-how and individual expertise. Advancing manufacturing science that underpins Li-ion battery electrode production is critical to adding value to the electrode manufacturing value chain. Overcome the current barriers in the electrode manufacturing requires advances in material innovation, manufacturing technology, in-line process metrology and data analytics to improve cell performance, quality, safety and process sustainability. In this roadmap we present where fundamental research can impact advances in each stage of the electrode manufacturing process from materials synthesis to electrode calendering. We also highlight the role of new process technology such as dry processing and advanced electrode design supported through electrode level, physics-based modelling. To compliment this, the progresses in data driven models of full manufacturing processes is reviewed. For all the processes we describe, there is a growing need process metrology, not only to aid fundamental understanding but also to enable true feedback control of the manufacturing process. It is our hope this roadmap will contribute to this rapidly growing space and provide guidance and inspiration to academia and industry.