The left-right symmetric model (LRSM) is an attractive extension of the Standard Model (SM) that can address the origin of parity violation in the SM electroweak interactions, generate tiny neutrino masses, accommodate dark matter (DM) candidates, and provide a natural framework for baryogenesis through leptogenesis. In this work, we utilize the minimal LRSM to study the recently reported DAMPE results of the cosmic e þ e − spectrum, which exhibits a tentative peak around 1.4 TeV, while satisfying the current neutrino data. We propose to explain the DAMPE peak with a complex scalar DM χ in two scenarios: (1) χχ Ã → H þþ