In the efforts to mitigate the ongoing humanitarian crisis at the European sea borders, this work builds detection capabilities to help find refugee boats in distress. For this paper, we collected dual-pol and quad-pol synthetic aperture radar (SAR) data over a 12 m rubber inflatable in a test-bed lake near Berlin, Germany. To consider a real scenario, we prepared the vessel so that its backscattering emulated that of a vessel fully occupied with people. Further, we collected SAR imagery over the ocean with different sea states, categorized by incidence angle and by polarization. These were used to emulate the conditions for a vessel located in ocean waters. This setup enabled us to test nine well-known vessel-detection systems (VDS), to explore the capabilities of new detection algorithms and to benchmark different combinations of detectors (detector fusion) with respect to different sensor and scene parameters (e.g., the polarization, wind speed, wind direction and boat orientation). This analysis culminated in designing a system that is specifically tailored to accommodate different situations and sea states.