Hydraulic fracturing has become an important stimulation technique for low/ultralow permeability reservoirs. Supercritical CO 2 (SC-CO 2 ), as a no water phase material of fracturing fluid, receives wide attention. Current researches on SC-CO 2 fracturing fluid has mainly focused on its viscous properties and superiorities. However, little attention has been devoted to the interaction between SC-CO 2 fracturing fluid and the oil reservoir during the fracturing process. Besides, in a low permeability reservoir, the wettability determines the oil recovery by imbibition, which is a main way to explore oil for a matrix. Therefore, it is crucial to study the wettability alteration on a low permeability oil reservoir introduced by SC-CO 2 fracturing fluid. In this study, a contact angle goniometer was introduced to characterize the wettability alteration on low permeability cores by SC-CO 2 fracturing fluid. Meanwhile, nuclear magnetic resonance T2 spectra, a scanning electron microscope, and a energy dispersive spectrometer were used to explain the mechanisms of wettability alteration and the adsorption of fracturing fluid was analyzed. In addition, spontaneous imbibition tests were conducted to definite the impact of wettability alteration on oil production. The results showed that the thickener in SC-CO 2 fracturing fluid, fluid filter loss, and reservoir permeability were all responsible for wettability alteration on the core surface. With the increasing thickener contents and filter loss of fracturing fluid, cores turned to be intermediate and slightly water-wet from initial strongly water-wet, which was unfavorable for oil production.Comparatively low permeability cores which consist of more micro-small pores were more likely to make treated cores oleophilic, as well. Thickener adsorption was confirmed to be the main mechanism on wettability alteration by SC-CO 2 fracturing fluid, which resulted in different pore surfaces, and thus a more oleophilic cores surface. On the basis of the results of spontaneous imbibition, strong lipophilicity cores corresponded to lower oil recovery, which illustrated that wettability alteration caused by SC-CO 2 fracturing fluid was not favored for oil flow.