Scanning Probe Microscopy
DOI: 10.1007/978-0-387-28668-6_4
|View full text |Cite
|
Sign up to set email alerts
|

Scanning Capacitance Microscopy for Electrical Characterization of Semiconductors and Dielectrics

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
5
0
1

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(6 citation statements)
references
References 54 publications
0
5
0
1
Order By: Relevance
“…The development of small-scale characterisation techniques of dielectric structures has become increasingly critical for various application fields: micro-and nano-electronics [1,2], electronics [3], electrochemistry [4,5], photovoltaics [6], biological science [7],… Traditionally this can be achieved through the coupling of Atomic Force Microscopes (AFM) [8] to capacitance sensors (or more generally to impedance-meters [9,10]). After the pioneering work of Matey and Blanc [11], the early Scanning Capacitance Microscopes (SCM) that combined AFM to capacitive measurements were dedicated to surface topography mapping [12,13].…”
Section: Introductionmentioning
confidence: 99%
“…The development of small-scale characterisation techniques of dielectric structures has become increasingly critical for various application fields: micro-and nano-electronics [1,2], electronics [3], electrochemistry [4,5], photovoltaics [6], biological science [7],… Traditionally this can be achieved through the coupling of Atomic Force Microscopes (AFM) [8] to capacitance sensors (or more generally to impedance-meters [9,10]). After the pioneering work of Matey and Blanc [11], the early Scanning Capacitance Microscopes (SCM) that combined AFM to capacitive measurements were dedicated to surface topography mapping [12,13].…”
Section: Introductionmentioning
confidence: 99%
“…The detected output signal detected using a capacitance sensor based on a high frequency (typically in the range of 1 GHz) resonant circuit (21) is proportional to the change in capacitance (dC/dV or more accurately ΔC/ΔV) of the local MIS capacitor. Such sensors are capable of detecting capacitance variations as low as in the zeptofarad ECS Transactions, 28 (2) 139-156 (2010) (10 -21 F) range (18,22). However, it should be noted that currently available commercial SCM modules normally yield only qualitative dC/dV data and for a quantitative analysis they have to be carefully calibrated.…”
Section: Introductionmentioning
confidence: 99%
“…However, the SCM signal strongly depends on the parameters of the insulating layer. Some groups have exploited this fact and used SCM as a tool for nondestructive characterization of insulating layers on semiconductors (22,(26)(27)(28)(29)(30). In this case, since the underlying semiconductor typically has homogeneous properties (i.e., doping concentration), the SCM output signal from the MIS structure only depends on the insulator properties (layer thickness t i , interface state density D it , insulator charge Q Is and permittivity ε).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Она позволяет получать емкостные изображения поверхности проводящих и диэлектрических образцов в нанометровом масштабе и извлекать информацию о скрытых структурах и неоднородностях в этих материалах [1,2]. СЕСМ, следуя классическому макроскопическому способу определять степень легирования полупроводников на основе зависимости электрической емкости от напряжения C(U), стала методом контроля двумерного распределения легирующей примеси в устройствах микроэлектроники [3][4][5]. В полупроводниковой индустрии этот метод нашел применение для анализа работы и отказов устройств, визуализации эффектов ионной имплантации [6] и характеризации локальных электрических параметров эпитаксиальных полупроводниковых гетероструктур [7].…”
unclassified