High-k dielectric layers (HfSixOy and ZrO2) with different film morphologies were investigated by tunneling atomic-force microscopy (TUNA). Different current distributions were observed for amorphous and nanocrystalline films by analyzing TUNA current maps. This even holds for crystalline layers where highly resolved atomic-force microscopy cannot detect any crystalline structures. However, TUNA enables the determination of morphology in terms of differences in current densities between nanocrystalline grains and their boundaries. The film morphologies were proven by high-resolution transmission electron microscopy. The investigations show TUNA as powerful current mapping tool for the characterization of morphology in thin high-k films on a nanoscale
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.