Accurate and efficiently updated information on color-coated steel sheet (CCSS) roof materials in urban areas is of great significance for understanding the potential impact, challenges, and issues of these materials on urban sustainable development, human health, and the environment. Thanks to the development of Earth observation technologies, remote sensing (RS) provides abundant data to identify and map CCSS materials with different colors in urban areas. However, existing studies are still quite challenging with regards to the data collection and processing costs, particularly in wide geographical areas. Combining free access high-resolution RS data and a cloud computing platform, i.e., Sentinel-2A/B data sets and Google Earth Engine (GEE), this study aims at CCSS material identification and mapping. Specifically, six novel spectral indexes that use Sentinel-2A/B MSIL2A data are proposed for blue and red CCSS material identification, namely the normalized difference blue building index (NDBBI), the normalized difference red building index NDRBI, the enhanced blue building index (EBBI), the enhanced red building index (ERBI), the logical blue building index (LBBI) and the logical red building index (LRBI). These indexes are qualitatively and quantitatively evaluated on a very large number of urban sites all over the P.R. China and compared with the state-of-the-art redness and blueness indexes (RI and BI, respectively). The results demonstrate that the proposed indexes, specifically the LRBI and LBBI, are highly effective in visual evaluation, clearly detecting and discriminating blue and red CCSS covers from other urban materials. Results show that urban areas from the northern parts of P.R. China have larger proportions of blue and red CCSS materials, and areas of blue and red CCSS material buildings are positively correlated with population and urban size at the provincial level across China.