Herbivore-induced plant volatiles prime neighbouring plants to respond more strongly to subsequent attacks. However, the key volatiles that trigger this state and their priming mechanisms remain largely unknown. The tea geometrid Ectropis obliqua is one of the most devastating leaf-feeding pests of tea plants. Here, plant-plant communication experiments demonstrated that volatiles emitted from tea plants infested by E. obliqua larvae triggered neighbouring plants to release volatiles that repel E. obliqua adult, especially mated females. Volatile analyses revealed that the quantity of eight volatiles increased dramatically when plants were exposed to volatiles emitted by infested tea plants, including (Z)-3-hexenol, linalool, α-farnesene, β-Ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). The results of behavioural bioassays demonstrated that β-Ocimene strongly repelled mated E. obliqua females. Individual volatile compound exposure experiments revealed that (Z)-3-hexenol, linalool, α-farnesene and DMNT triggered the emission of β-Ocimene from tea plants. Chemical inhibition experiments demonstrated that the emission of β-Ocimene induced by (Z)-3-hexenol, linalool, α-farnesene and DMNT were dependent on Ca 2+ and JA signalling. These findings help us to understand how E. obliqua moths respond to volatiles emitted from tea plants and provide new insight into volatile-mediated plant-plant interactions. They have potential significance for the development of novel insect and pest control strategies in crops. K E Y W O R D S calcium (Ca 2+ ), HIPVs, JA, mated moth, MPK signalling, tea plant 1 | INTRODUCTION As sedentary organisms, plants are under constant threat of attack from herbivores and pathogens. Throughout development, plants must adapt to their surroundings and respond to diverse environmental stimuli in ways that influence their interactions with other organisms. Thus, plants have evolved a broad range of surprisingly sophisticated mechanisms that allow them to deal with biotic and abiotic stressors (Conrath, Tingting Jing and Xiaona Qian contributed equally to this work.